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Abstract 

A new method is presented to overcome the cumber- 
someness of the existing methods in the derivation and 
tabulation of the results for general tensors when the 
elements of the group do not all simply permute 
coordinates apart from sign; here the method is 
described for the generator 3 z. The method uses a con- 
jectured, optimal choice of independent components 
(verified up to rank 8) and a new procedure to obtain 
the expressions of the dependent components. The inde- 
pendent components adopted consist of sets of compo- 
nents related by appropriate permutations of compo- 
nent indices: this choice is suggested by the similarity of 
transformation properties of these components. The 
procedure for the determination of the expressions of 
dependent components is based on the representation 
of all components by suitable numerical vectors. The 
procedure allows the exploitation of the restrictions on 
the general form of the expressions which follow from 
the optimal choice of independent components. The 
method is applied to the derivation of the schemes of 
general tensors up to rank 8 in group 3(3z). The 
simolification provided by the method is considerable. 
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The method permits, for instance, the complete deter- 
mination of the scheme for the 2 s components with 
only x and y indices of a general eighth-rank tensor by 
solving five systems of linear inhomogeneous equations, 
one 7 by 7, two 6 by 6 (with identical matrices of 
coefficients), one 5 by 5 and one 3 by 3. Furthermore, 
and perhaps more importantly, the resulting scheme 
can be completely represented by ten distinct 
expressions (and their permutations). Several errors are 
pointed out in the table of Chung & Li [Acta Cryst. 
(1974), A30, 1-13] for the (non-tensorial) array for 
fourth-order elasticity in group 3(3z). 

1. A synopsis of the existing methods 

The field of tensor properties of crystals is probably the 
oldest chapter of solid-state physics, and thus the 
history of the methods used to study the effect of the 
rotational symmetry of crystals on their tensor proper- 
ties is a long and involved one. Here we will try to focus 
on the main ideas of these methods. 

A broad distinction can be made between direct 
methods and indirect methods. The direct methods 
work with the tensor as such, while the indirect 
methods work with the cause-effect relationship 
defining the tensor or with the expression of a thermo- 
dynamic potential involving the tensor. 

The typical direct method imposes invariance on 
each tensor component, i.e. imposes equality between 
each tensor component and its transforms under all the 
symmetry elements of the crystal. The method, first 
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proposed conceptually by Hermann (1934), has since 
been applied by many authors. Significant improve- 
ments of the method are as follows (Fumi, 1952a,b):* 
(i) the effective use of the correspondence between the 
transformation properties of Cartesian orthogonal 
tensor components and of coordinate products; (ii) the 
consideration of only the generating elements of the 
crystal point groups; and (iii) the use - whenever 
possible - of a Cartesian orthogonal frame (in 
accordance with crystallographic convention) in which 
the generating elements of the group simply permute 
coordinates aside from sign (permutative Cartesian 
orthogonal frame). The method with these three 
improvements is known as 'the direct-inspection 
method'. Improvements (i) and (iii) were introduced 
independently by Landau & Lifschitz: they are used, 
for example, in Landau & Lifschitz (1959, 1960) but 
were already essentially present in the first Russian 
edition (1944) of their book Mechanics of Continuous 
Media (E. Lifschitz, private communication). Improve- 
ments (ii) and (iii) have been used also by Schouten 
(1951, 1954) and by Wondratschek (1952). 

In its initial connotation (Fumi, 1952a,b), the name 
'direct-inspection method' referred strictly to the 
method actually using a (conventional) permutative 
Cartesian orthogonal frame for the generating elements 
of the group, and thus applicable only to the groups of 
1-, 2- and 4-fold principal symmetry, and to the 
derivation of the results for the various trigonal and 
hexagonal groups from the results for group 3(3z): in 
these cases, the method truly yields the scheme of a 
tensor by direct inspection. The method is described in 
this form by Nye (1957) and Bhagavantam (1966). 
Recently, however, some authors (e.g. Lax, 1974) have 
used the name more loosely for the method of imposing 
invariance on each tensor component when it includes 
the three improvements described above, in particular 
the third one only whenever possible. [Several other 
authors, e.g. Hearmon (1961), Birss (1966), Mason 
(1966) and Wooster (1973), appear instead to charac- 
terize improperly the direct-inspection method merely 
by the use of the correspondence with the co- 
ordinate products - point ( i ) -  since they seem to 
consider points (ii) and (iii) as integral parts of the 
(nameless) typical direct method.] 

The specific direct method proposed by Hermann 
(1934) actually has two versions. The method as 
presented originally treats separately the effect of each 
(rotation and rotation-reflection) symmetry axis in its 
(generally complex) principal axes reference frame, and 
is thus especially cumbersome to apply in the non- 
commutative crystal point groups. Here we describe 

* The first published presentation and application of the three 
improvements (specifically to the third-order elastic tensor) is 
actually given in the paper by Fumi (1951), since the paper by 
Fumi (1952a) submitted in December 1950 was published only 
in January 1952. 

Hermann's method in a simplified form for the case of a 
cyclic group, specifically 3(3z). In one version of the 
method, one identifies first by inspection in the 
(complex) principal axes frame of the threefold axis the 
tensor components which are invariant (the only non- 
vanishing components in this frame), and one then 
expresses through the known coordinate trans- 
formation the Cartesian orthogonal tensor components 
in terms of the identified invariant components, which 
are viewed as arbitrary parameters. [This simplified 
description is given also by Jagodzinski & Won- 
dratschek (1955, p. 53)]. In the other version (which 
Hermann favoured and applied) one identifies, instead, 
by inspection the vanishing tensor components in the 
(complex) principal axes frame of the threefold axis, 
and then expresses these vanishing components in terms 
of the Cartesian orthogonal components, again through 
the known coordinate transformation, thus obtaining 
relations among the Cartesian orthogonal components. 

Another direct method, of group-theoretical nature, 
imposes invariance to (a minimal set of) linear 
combinations of tensor components which are bases for 
the non-identical irreducible representations of the 
crystal point group, i.e. imposes that these linear 
combinations be equal to zero (Fumi 1952c).* It is in 
fact sufficient to construct the non-invariant linear 
combinations of the tensor components which appear 
in the tensor invariants, since these are the only non- 
vanishing components. A technical trick of Fumi's 
method of non-invariants consists in constructing 
tensorial non-invariants of higher ranks by direct 
products of invariants and non-invariants of lower 
rank, thus limiting to a minimum the use of projection 
operators. The method permits one also to treat 
together in an efficient way a group and its sub- 
groups.t An extension of the method to infinite groups 
has been published recently by Juretschke (1975).$ The 
extension introduces a new trick to reduce ad hoc the 
number of non-invariants which would have to be con- 
structed in a straightforward application of the method 
of non-invariants to the rotation group in three 
dimensions: the trick (which is not presented clearly) 
consists simply in exploiting first as far as possible the 
equivalence of all directions in space by the direct- 
inspection method. 

Typical indirect methods are the original method by 

* A brief presentation of the basic idea of the method is given by 
Heine (1960), p. 309. Bhagavantam (1966), however, ignores the 
existence of the method (see e.g.p. 82). 

~" Sirotin (! 960) quotes the paper by Fumi (1952c), together with 
papers concerning the direct-inspection method, and ignores the 
method of non-invariants (Fumi, 1952c). It should be stressed that 
this method does not proceed step-by-step from low crystallo- 
graphic symmetry upwards (like, for example, the direct-inspection 
method), but proceeds instead from groups to subgroups, as Sirotin 
himself (Sirotin, 1960) proposes to do. 

~t Unfortunately Juretschke (1975) omits to mention the original 
paper by Fumi (1952c). 



F. G. FUMI AND C. RIPAMONTI 537 

Neumann (1885) and its improvement by Voigt (1928). 
Neumann imposes invariance under each symmetry 
element to the general cause-effect relationship defining 
the tensor, i.e. imposes identity with the defining 
relationship written in Cartesian orthogonal frames 
equivalent by symmetry, thus obtaining relations 
among tensor components. Voigt improves Neumann's 
method by using a defining relationship for the tensor 
in terms of a scalar (typically a thermodynamic 
potential), i.e. a quantity independent from the reference 
frame. 

Group-theoretical versions of these last two methods 
have been proposed by various authors (Jahn, 1937; 
Murnaghan, 1951; Smith & Rivlin, 1958; Fano & 
Racah, 1959; Landau & Lifschitz, 1959, 1960; Callen, 
1968; Lax, 1974). In these methods one obtains con- 
ditions on the tensor components by comparing the 
general defining relationship with the most general 
defining relationship invariant for the point group of the 
crystal. Group theory ensures that the most general 
defining relationship consistent with a symmetry group 
couples only in all possible ways the i rreducible  iso- 
var ian ts*  of the two quantities entering the relation- 
ship (see Fano & Racah, 1959, ch. 3, pp. 15-16). The 
problem is thus to find the irreducible variants of the 
two quantities, and then to couple the irreducible iso- 
variants with independent, arbitrary constants. In the 
special case in which one of the two quantities is a 
scalar, the problem reduces to the search ~of the 
invariants of the other quantity, and to the coupling of 
these invariants to the scalar quantity. It is, in fact, 
always possible to attack the problem in this special 
form (see Lax, 1974), since one can always use as the 
defining relationship of a tensor the scalar constructed 
by summing the products of each Cartesian orthogonal 
tensor component by the corresponding product of 
vector (or pseudovector) components. 

Most of the specific methods quoted above differ 
essentially in the particular technique used to construct 
the most general expression of a thermodynamic 
potential invariant in a given group. Jahn (1937) 
obtains the most general expression of the elastic 
energy, invariant in a given group, by writing this 
energy as the triple matrix product of the column 
vector defined by the irreducible variants of the strain 
tensor, the invariant elastic constants matrix obtained 
by coupling the irreducible isovariants of the strain 
tensor, and the row vector defined again by the 
irreducible variants of the strain tensor. Murnaghan 
(1951), on the other hand, obtains the most general 
expression of the elastic energy (of the first, second and 
third order in the strain), invariant under a symmetry 
axis, by identifying by inspection the pertinent strain 
invariants in the (complex) principal axes frame of the 

* We call irreducible isovariants quantities transforming accord- 
ing to the same irreducible representation of the group, and not 
merely according to equivalent representations. 

symmetry axis. Landau & Lifschitz (1959, 1960) use a 
similar technique to obtain the most general invariant 
expression of various thermodynamic potentials in a 
trigonal or hexagonal group. Smith & Rivlin (1958) 
(see also Green & Adkins, 1960) identify, instead, for 
each crystal point group the basic polynomial strain 
invariants contained in the so-called 'integrity base' 
(Weyl, 1946): the most general invariant expression of 
the elastic energy (to any order in the strain) must be a 
polynomial function of these basic strain invariants. 
Callen (1968) considers in particular the problem of 
constructing the most general expression of a thermo- 
dynamic potential bilinear in the cause quantity which 
is invariant in a given group, and he solves it by con- 
structing a complete set of invariants bilinear in the 
cause quantity through 'scalar' products of the ir- 
reducible isovariants of the quantity itself [the same 
type of technique used by Jahn (1937) for elasticity]. 
Lax (1974) generalizes somewhat this last approach. 
He considers specifically the construction of the most 
general invariant polynomial of degree equal to the 
rank of the tensor and involving products of compo- 
nents of two tensorial quantities of generally different 
rank and type (polar or axial). He solves the problem 
by constructing a compl&e set of pertinent invariants 
through 'scalar' products of the irreducible isovariants 
of the two tensorial quantities of interest. It should 
finally be noted that Callen (1968) also applies to 
several tensor properties in several crystal point groups 
the type of coupling procedure between cause and 
effect described by Fano & Racah (1959), and used 
e.g. by Nowick & Heller (1965, §3.2). 

Most direct methods, and the indirect methods of 
Neumann (1885) and Voigt (1928), lead to systems of 
linear homogeneous equations among the Cartesian 
orthogonal tensor components. To find the explicit 
expressions of the dependent components in terms of a 
set of independent components, one can solve these 
equations by the Gauss-Jordan elimination method 
(see Apostol, 1967).* The systems of equations are 
particularly involved for high-rank tensors in trigonal 
and hexagonal groups. In fact, the schemes for general 
tensors in trigonal and hexagonal groups have as yet 
been worked out only up to rank 6 (by the method of 
non-invariants) (Fieschi & Fumi, 1953).1":I: The schemes 

* One can also adopt Cramer's rule but this requires an a priori 
choice of a set of independent components. 

"[" Wondratschek (1953) (who uses a convenient mixture of the 
two versions of Hermann's method) does not report the explicit 
expressions of the dependent Cartesian orthogonal components of a 
general sixth (or fourth) rank tensor in group 3(3z), but only a set of 
independent equations that the components of the tensor must 
satisfy. 

Birss (1966) unfortunately implies that the results of Fieschi & 
Fumi (1953) for trigonal and hexagonal groups were obtained by 
the typical direct method (which he does not call the direct- 
inspection method): in fact, he states explicitly on p. 55 that the 
results of Fumi (1952c) were obtained in this way, and thus ignores 
completely the method of non-invariants (Fumi, 1952c). 
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of one particular tensor of high intrinsic symmetry of 
rank higher than 6 have also been obtained for these 
groups, the fourth-order elastic tensor by the method of 
Voigt (Chung & Li, 1974):* however, the reported 
schemes contain, unfortunately, a number of errors as 
we will see in detail in this paper (§ 5) and in paper II 
(part b). 

The group-theoretical versions of the indirect 
methods, and one version of Hermann's method, lead 
instead to systems of linear expressions for the 
Cartesian orthogonal tensor components in terms of 
arbitrary parameters. The version of Hermann's 
method in question has apparently never been used as 
such. The other methods have as yet been applied only 
to simple cases of essentially didactic interest where it is 
easy to eliminate the parameters by inspection, and to 
obtain in this way the explicit expressions of the 
dependent tensor components (e.g. Lax, 1974). 

2. Approach to the problem and plan of work 

A basic distinction to be made in the problem of 
obtaining the scheme of a tensor in a point group is the 
distinction between 'easy' point groups (the groups of 
1-, 2- and 4-fold principal symmetry) and 'difficult' 
point groups (the trigonal and hexagonal groups). The 
triclinic, monoclinic, rhombic, tetragonal and cubic 
groups are easy groups because they involve only 
generators for which there exist Cartesian orthogonal 
frames (of the type conventionally adopted in crystal 
physics) which are purely permutative (i.e. such that 
the generators merely permute coordinates apart from 
sign) or purely multiplicative [i.e. such that the 
generators merely multiply each coordinate by a 
numerical factor (specifically + 1) (Fumi, 1952a)1. The 
trigonal and hexagonal groups are difficult groups 
because (and only because) they involve a threefold 
symmetry axis 3~ for which there does not exist a 
Cartesian orthogonal frame which is merely per- 
mutative. The generators to be added to the threefold 
axis 3 z to obtain the other trigonal and hexagonal 
groups are again particularly easy, since for them there 
exist (conventional) Cartesian orthogonal frames which 
are purely multiplicative (Fumi, 1952b).t The relevant 
consequences of these facts are as follows: 

(i) in the groups of 1-, 2- and 4-fold principal 
symmetry the schemes for general tensors are simple, 

* Chung & Li (1974) treat in fact the (non-tensorial) array Cpqrs 
which enters into the fourth-order term of the elastic energy written 
as 1/4t Zp<q<r<~ Cpq~ ~lprlq~l~rls (where p ranges from 1 to 6 and r/p 
is the pth component of the strain tensor). Surprisingly, they include 
Fumi (1952a,c) and Fieschi & Fumi (1953) among the papers in 
which the schemes of third-order elastic constants were obtained for 
all crystal classes, while the complete derivation for the third-order 
elastic tensor was given by Fumi (1951, 1952d). 

t Unfortunately, Lax (1974) asserts that the problem is 'difficult' 
whenever one has to deal with a threefold or sixfold symmetry 
element: he is apparently unaware of the paper by Fumi (1952b). 

with the non-vanishing components at most related to 
each other in pairs, and it is thus easy to give compact 
formulas which provide the scheme of a (polar or axial) 
general tensor of any rank, i.e. it is easy to solve the 
problem in closed form: for this, it is actually sufficient 
to introduce a suitable notation to formalize the results 
given by the direct-inspection method (e.g. Jagodzinski 
& Wondratschek, 1955); 

(ii) the effect of the threefold axis 3 z must, instead, 
be studied separately rank by rank; 

(iii) the additional relationships between the compo- 
nents of a (general or particular, polar or axial)tensor 
which appear in passing from group 3(3~) to the other 
trigonal and hexagonal groups state merely that some 
components vanish, and it is thus quite easy to express 
these relationships in closed form: one can repeat the 
statement made in (i) and quote again the same review 
article. 

This paper presents a new method for studying the 
effect of the generator 3 z on general tensors. The 
method uses a conjectured, optimal choice of inde- 
pendent components and adopts numerical vectors rep- 
resenting the tensor components to obtain the ex- 
pressions of the dependent components: the method 
simplifies both the derivation of the results and, perhaps 
more importantly in the era of electronic computers, 
their tabulation. The method, as characterized by its 
two features, is in fact useful for any symmetry axis 
(parallel to a coordinate axis) which does not simply 
permute coordinates apart from sign (i.e. for which the 
choice of independent components is relevant). The 
effectiveness of the method is illustrated by its 
application to general tensors up to rank 8 in group 
3(3z), to give for the first time the schemes of general 
tensors of ranks 7 and 8. 

The other crystal point groups are treated in paper 
II (Fumi & Ripamonti, 1980), using the notion of 
vector representatives to give compact derivations of 
the closed-form results discussed in points (i) and (iii) 
above. 

3. A new method for group 3(3z) 

This section describes a new method to obtain the 
relations among the Cartesian orthogonal components 
of a general tensor which is invariant in group 3 with 
z II 3 following crystallographic convention. 

(a) Two main ideas are the basis of the method. The 
first idea is to represent the components of an invariant 
tensor by numerical vectors. In fact the components of 
a tensor which is invariant in a given group lie in a 
linear space, since linear combinations of invariant 
tensor components are also invariant. The adoption of 
representative vectors permits a direct search for the 
expressions of the dependent components in terms of a 
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chosen set of independent components. The coefficients 
in such an expression are determined by the vector 
equation obtained by replacing in the expression each 
component by its representative vector. 

The second idea is to make a specific choice of inde- 
pendent components, adopting as such sets of compo- 
nents which are closed under permutations of the 
maximum possible number of coordinate indices. This 
choice permits one to express the scheme of an 
invariant tensor by relatively few distinct relations and 
by their (generally numerous) permutations, and gives 
relations of simple form. 

The first idea by itself can be made the basis of a 
method of vector representatives, which is complete as 
such. The second idea, on the other hand, if included in 
any of the existing methods, would give permutational 
compactness to the resulting schemes. 

The combination of the two ideas yields a par- 
ticularly powerful method for group 3(3z). In fact, it is 
sufficient to derive the expression of one component for 
each family of dependent components which is closed 
under appropriate permutations of coordinate indices, 
and the expression involves only linear combinations of 
independent components which have the same per- 
mutational symmetry of the dependent component in 
the relevant indices. The expressions o f  the other 
dependent components follow at once by simple rules. 

(b) An obvious simplifying feature of group 3(3~) is 
the invariance of z. This feature implies that the 
problem of writing the relations among the Cartesian 
orthogonal components of a tensor reduces in fact to a 
two-dimensional problem in x and y. 

Another simplifying feature of group 3(3~) is the 
possibility of decoupling, for each rank in x and y, the 
ny even and ny odd components (ny, number of y 
indices): this feature has been exploited, for example, 
by Fumi (1952c), Fieschi & Fumi (1953) and 
Wondratschek (1953). 

The problem to be tackled in group 3(3~) reduces 
thus, for each rank in x and y, to the derivation of the 
expressions of the dependent components with ny even 
(or ny odd) in terms of a chosen set of independent 
components with ny even (or ny odd). 

(c) Let us specify now how we choose the rep- 
resentative vector of a Cartesian orthogonal compo- 
nent of an invariant tensor. 

Consider a complete family of linearly independent 
tensor invariants of a given group, constructed by 
appropriate linear combinations of the Cartesian 
orthz)gonal components of a tensor. We note that the 
set of numerical coefficients with which a given 
component enters into the family of tensor invariants is 
a valid representative vector of the component when 
this is subject to the condition of invariance under the 
group. Indeed these numerical coefficients satisfy the 
three following conditions: 

(i) they transform as the Cartesian orthogonal 
tensor component under the operations of the group 
(since they are contravariant to the Cartesian 
orthogonal tensor component); 

(ii) they are invariant under the operations of the 
group (since a tensor invariant has by definition the 
same form in frames connected by an operation of the 
group); 

(iii) they are equal in number to the dimension of the 
linear space of the invariant tensor. 

In group 3(3z) we need thus complete families of 
linearly-independent tensor invariants of the various 
ranks in x and y. We choose complete families which 
are very simple to construct and which make par- 
ticularly simple the determination of the representative 
vectors of the Cartesian orthogonal tensor components. 
Consider Hermann's (1934) base for the threefold axis 
3z: 

+ = x  + i y , - = x - i y ,  z. (1) 

This is a multipl icative base (see § 2), since it is the 
principal axes frame for the threefold axis: in this base, 
the threefold axis is represented by a 3 x 3 diagonal 
matrix with diagonal elements exp (2zd/3), exp (-2zd/3) 
and 1. Therefore, in this base the construction of tensor 
invariants of any rank in x and y reduces purely to an 
inspection, which can be formalized by the compact 
formula [Hermann, 1934; Wondratschek, 1952; see 
also Murnaghan (1951) and Landau & Lifshitz (1959, 
1960)]* 

n+ = n_ mod 3 (2) 

(with n+ + n_ = rank in x and y), where n+ and n_ are 
the numbers of + and - indices, respectively.t Note 
that a complete family of these tensor invariants of 
given rank in x and y contains always pairs of complex- 
conjugate tensor invariants. 

Complete families of linearly independent tensor 
invariants of any given rank in x and y for ny even and 
for ny odd are given by the real parts (Re) and by the 
imaginary parts (Im) (multiplied by i, for convenience) 
of the tensor invariants provided by (2).:I: These are the 

* Sirotin (1961) rederives (2) in a different context. In fact, he 
presents a powerful technique for constructing tensor invariants in 
all the crystallographic groups, which is based on the introduction 
of a (much) simplified projection operator: the technique has been 
applied, for example, by Smith (1970). 

I" The corresponding compact formula for group oo (ooz) reads 
/'/+ = n _ .  

1: The splitting of the tensor components of a given rank in x and 
y into the two sets with ny even and ny odd (see § 3b) is easily under- 
stood in terms of representative vectors. In fact the elements of the 
representative vector of a tensor component with n r even taken from 
a pair of complex-conjugate tensor invariants given by (2) are equal, 
while the corresponding elements of the representative vector of a 
tensor component with ny odd are equal in absolute value but 
opposite in sign. This implies that the representative vectors of a 
component with r/y e v e n  and of a component with ny odd are 
independent vectors in the linear space of an invariant tensor in x 
and y. In other words, this linear space splits into two independent 
linear spaces, one for r/y e v e n  and one for ny odd. 
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tensor  invariants  that  we use to obtain the rep- 
resentative vectors. To fix the sign of  the Im-type 
invariants,  we adopt  the convention of  taking with a 
plus sign, in an Im invariant,  the monomial  invariant  in 
+ and - with an even number ,  n_, o f -  symbols  on all 
indices for odd rank,  and on all indices but the last for 
even rank.  (The reason for this specific choice will 
appear  clear in the following sections and in the 
Appendix.)  For  consistency,  we denote then both the 
Re- and Im-type invariants by this monomial  invariant.  

The determinat ion of  the representat ive vectors of  
the Car tes ian  or thogonal  tensor components  with ny 
even (or with ny odd) f rom the pertinent Re-type (or 
Im-type)  tensor  invariants  can obviously be done 
directly f rom the real (or imaginary)  parts  of  the 
pertinent monomia l  tensor invariants  in + and - .  
Consider  the components  with ny even of  a tensor of  
rank 4. The pertinent Re-type tensor invariants  are 
R e - - - - +  +, R e - + - +  and R e + - - + :  the components  
xxxx  and yyyy have coefficient +1 in all three 
invariants,  while the components  xxyy and yyxx  have 
coefficient i 2 -- - 1  in the invariant  which has the two - 
as first two indices and coefficient - i  2 = + 1 in the other 
two invariants.  

It should be stressed that  the application of  represen- 
tative vectors to obtain the expression of  a dependent  
component  in terms of  independent  components ,  does 
not generally require the use of  (complete) rep- 
resentative vectors taken f rom all the pertinent Re- (or 
Im-) type tensor invariants:  it is, in fact, generally 
sufficient to use ' reduced '  representative vectors taken 
f rom a few appropr ia te  linear combinat ions  of  these 
tensor invariants  (see § 3e). This significant sim- 
plification is due to the optimal  choice of  independent  
components  discussed in the next subsection. 

(d) The complete families of  tensor invariants  of  the 
Re (or Im) type of  a given rank  are closed under  

permutat ions  of  all indices for odd rank,* while they are 
closed under  permuta t ions  of  all indices but the last for 
even rank.  The reason for this is easily unders tood.  
Each  set of  monomial  invariants  in + and - of  given 
rank with given values of  n+ and n_ provided by (2) is 
permutat ional ly  closed on all indices for any rank.  For  
odd ranks,  the construct ion of  the Re- and Im- type  
invariants does not reduce this permuta t ional  closure 
since the pairs of  complex-conjugate  monomial  in- 
variants  belong to different sets of  monomial  invariants  
with exchanged values of  n+ and n_. For  even ranks ,  
instead, the construct ion of  the Re- and Im- type  
invariants  reduces the permutat ional  closure because  
the set of  monomial  invariants  with n÷ = n_ contains 
within itself the pertinent pairs of  complex-conjugate  
monomial  invariants:  the reduction in permuta t ional  
closure is f rom r to r - 1 indices since the total number  
of  monomial  invariants  in the set n÷ = n_ is given by 
r!/(r/2)! (r/2)!,  and thus the number  of  Re- (or Im-) type 
invariants  which can be formed from them is given by 
1/2[r!/(r/2)!(r/2)t] = ( r -  1 ) ! / ( r / 2 ) ! ( r / 2 -  1)!. The 
Re- and Im-type invariants  for even ranks  formed f rom 
sets of  monomial  invariants  with n+ :/: n can a lways  
be split when necessary  into families permutat ional ly  
closed on r - 1 indices. The permutat ional  closure of  
the Re- and Im- type  tensor invariants  is illustrated in 
Table 1 for ranks  2 -8 .  (For  rank 1 it is impossible to 

satisfy (2) and thus there are no tensor  invariants  in + 
and - . )  

Consider  now for each given rank  the families of  
Car tes ian  or thogonal  components  with ny even (or with 
ny odd) which have the same permutat ional  symmet ry  
and closure as the pertinent Re- (or Im-) type 
invariants,  on all indices for odd ranks  and on all 

* In other words, the application of a permutation of indices to an 
invariant of a family gives always an invariant contained in the 
family. 

Table 1. Tensor invariants in x and y and corresponding independent Cartesian orthogonal components f rom 
rank 2 to rank 8 in group 3 (3~) 

ny even n r odd 

r = 2  Re+i--, 1" xlx, 1 t im+i - ,  1 yix, 1 
r = 3  Re+++,  1 xxx, 1 t im+++, I yyy, 1 
r = 4 Re(----+)+, 3'I" (yyx)x, 3t tim(---+)+, 3 (xxy)x, 3 
r = 5 Re(+ . . . .  ), 5 (xyyyy), 5 tim(+ . . . .  ), 5 O'xxxx), 5 
r = 6 Re(+ + + - - ) - ,  10 (xxxyy)x, 10 tim(+ + + - - - ) - ,  10 (yyyxx)x, 10 

Re+ + + + +! +, 1 xxxxxlx, 1 tim+ + + + +', +, 1 yyyyylx, 1 
r = 7  Re(+ + + + + - - ) ,  21 (xxxxxyy),21 ilm(+ + + + +'----), 21 (yyyyyxx),21 
r = 8  Re( . . . .  +++)+,  35 (yyyyxxx)x, 35 tim( . . . .  +++)+,35 (xxxxyyy)x, 35 

Re( +)- ,  7 (yyyyyyx)x, 7 tim( ~-)-, 7 (xxxxxxy)x, 7 
R e + + + + + + + i - ,  1 xxxxxxxlx, 1 t i m + + + + + + + ! - ,  1 yyyyyyylx, 1 

* A vertical dashed line before the last index is used for even ranks when dealing with a single tensor invariant to recall that only the first 
r - 1 indices are permutationaUy connected. 

I" The round bracket indicates how the other tensor invariants (or the other components) of a family can be obtained from the one 
written out explicitly: it means specifically that one must take the distinct permutations of the + and - indices (or of the x and y indices) 
inside the bracket. The number next to an invariant (or to a component) gives the number of linearly independent tensor invariants (or of 
independent components) which can be obtained by this process. 
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indices but the last for even ranks, the rth index being 
fixed as x. 

These families of Cartesian orthogonal components 
for ranks 2 to 8 are reported in Table 1 and are valid 
families of independent components, as will be verified 
in §§ 4 and 5. We conjecture that the corresponding 
families of Cartesian orthogonal components for higher 
ranks will also be valid families of independent 
components. The existence of sets of independent 
components formed by permutationally connected 
components is not surprising owing to the commutation 
between index permutations and coordinate trans- 
formations (Weyl, 1946). The restriction of the 
permutational connection to r - 1 indices in the case 
of even r can be related to the existence of the set of 
components with n x = ny, composed of two subsets 
linked to each other by the exchange of x with y - a 
coordinate transformation which does not commute 
with the operations of the group. We believe this choice 
of independent components to be optimal both to ease 
the derivation of the expressions of the dependent 
components and to give to these expressions a compact 
form: the pertinent reasons will become apparent in the 
following sections. The rule for this choice can be 
formulated as follows, eliminating any direct reference 
to the Re- and Im-type tensor invariants: 

(i) for an odd-rank tensor in x and y, choose as 
independent Cartesian orthogonal components the 
components which satisfy the condition n x = 

ny mod 3;* 
(ii) for an even-rank tensor in x and y of rank r, 

choose as independent Cartesian orthogonal compo- 
nents the components which satisfy the condition n x = 

(ny + 1) mod 6 on the first r - 1 indices and which 
have x as last index.t 

This formulation re-expresses simply in n x and ny the 
conditions on n÷ and n_ which determine the r indices 
of  the (monomial) odd-rank tensor invariants, and the 
first r - 1 indices of the (monomial) even-rank tensor 
invariants. [Note that the condition n÷ + n_ = 0mod 2 
modifies (2) into n÷ = n_mod 6, while the condition n+ 
+ n_ = lmod 2 does not modify (2).]:I: 

(e) We present now the procedure to obtain the 
expression of a s i n g l e  dependent component in terms of 
the pertinent independent components. 

* The same choice of independent components was adopted for 
ranks 3 and 5 by Fumi (1952c), Fieschi & Fumi (1953) and 
Wondratschek (1953), and was proposed by Wondratschek (1953) 
as a choice for all odd-rank tensors. 

t For rank 4 the same type of choice of independent components 
was adopted by Fumi (1952c). 

:[: The corresponding rule of group oo(oo z) reads as follows: 
for an even rank tensor in x and y of rank r, choose as independent 
Cartesian orthogonal components the components which satisfy the 
condition n x = n. + 1 on the first r - 1 indices and which have 
x as last index. (Odd-rank tensors in x and y vanish identically 
in group c~(ooz).] 

The procedure has two parts. (I) The form of the 
expression of a given dependent component is dictated 
by its permutational symmetry in the exchange of 
indices (due to the repetition of like-coordinate indices), 
in the sense that the component can depend only on 
symmetrized linear combinations of the independent 
components which have the same permutational 
symmetry on the permutationally connected indices 
( i . e .  all indices for odd-rank tensors and all indices but 
the last for even-rank tensors). Consider in fact the 
most general form of the expression of a dependent 
component in terms of the pertinent independent 
components. Apply now to both sides of the expression 
a permutation of indices which exchanges two identical 
indices of the dependent component in positions 
corresponding to permutationally connected indices of 
the independent components: the result is of course a 
valid expression of the dependent component in terms 
of the independent components, and its comparison 
with the initial expression implies equalities among the 
coefficients of the independent components. (II) The 
specific values of the coefficients in the expression are 
easily obtained by replacing the dependent and the 
independent components by their representative vec- 
tors, and by solving the resulting vector equation, i . e .  

the resulting system of linear inhomogeneous 
equations. In fact (as indicated in I above), one has 
generally to deal only with the dependent component 
and with appropriately symmetrized linear com- 
binations of independent components, in a number 
smaller than the total number of pertinent independent 
components. It is then sufficient to use a 'reduced' rep- 
resentative vector taken from the (normalized) tensor 
invariants with the same permutational symmetry as the 
dependent component on the permutationally connec- 
ted indices. Indeed, the symmetrized linear com- 
binations of independent components enter only into 
the linear combinations of the pertinent Re- (or Im-) 
type tensor invariants which are symmetrized accor- 
dingly: this can be seen, for example, from the one-to- 
one correspondence between the elements of the two 
types of bases of the linear space of the invariant tensor 
illustrated in Table 1. A simple rule for obtaining the 
reduced representative vector of a given component is 
as follows: take as elements of the vector the 
coefficients with which the component enters into those 
Re- (or Im-) type tensor invariants which 'correspond' 
to one (arbitrary) independent component for each 
symmetrized linear combination of independent com- 
ponents; the 'correspondence' is given by x ,-, +, y ,-, - 
for ny even (and by y ,-, +, x , - , -  for ny odd) on the 
permutationally connected indices. 

A useful tool to simplify calculations, or to effect 
checks, whenever a given family of indepenOent 
components is split up in different ways into symme- 
trized linear combinations in the general forms of the 
expressions of different dependent components, is given 
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by the following rule" the sum of the coefficients with 
which a given family of independent components enters 
into a given tensor invariant is (obviously) a fixed 
number. 

Examples of the procedure are given in § 4.* 

( f )  A useful corollary of the procedure described in 
§ 3(e) concerns the connection between the expressions 
of two dependent components of an even-rank tensor 
with ny even which differ one from the other by the 
exchange of x and y in all indices (e .g .  x x x x y y  and 
y y y y x x ) .  The form of the expression of the two 
components in terms of the independent components is 
clearly the same. Thus the two systems of linear 
inhomogeneous equations for the coefficients of the two 
expressions differ at most in the elements of the rep- 
resentative vectors of the dependent components, and 
can conveniently be solved together. A specific recipe 
can also be given for the relation between the rep- 
resentatives of the two dependent components: the rep- 
resentatives taken from the Re-type invariants which 
satisfy the condition n+ = n_mod 4 are equal while 
those taken from the other Re-type invariants are 
opposite (see Appendix). This recipe implies that if all 
the pertinent Re-type invariants satisfy the condition n+ 
= n_mod 4, the two dependent components are in fact 
equal. 

Of  course, the recipe for the relation between the 
representatives of two components of an even-rank 
tensor with ny even differing by the exchange of x and y 
on all indices is not restricted to the case in which both 
components are dependent. Thus the recipe can also 
lead to equality between a dependent and an indepen- 
dent component. 

* An illustrative example for group oo(~z) is the following. 
Consider the x, y components with ny even of a tensor of rank 10. 
The pertinent Re-type tensor invariants are Re(+ + + + + . . . .  )--, 
126 and the pertinent independent components are (xxxxxyyyy)x ,  
126. Consider now specifically the component x x x x x x x x x x .  The 
form of its expression in terms of the independent components reads 
simply 

126 

x x x x x x x x x x  = c xxxxxyyyyx ,  

126 

where the symbol .~.,~9~)3x denotes the summation of the 126 
independent components ( xxxxxyyyy )x .  It is sufficient to consider 
the 'reduced' representative vectors of the dependent and of the 
independent components taken from the Re-type invariant written 
out explicitly above. The component x x x x x x x x x x  has clearly 
representative 1. Sixty-six independent components have also 
representative 1: they are the component xxxxxyyyyx ,  the 
(5I/2!3!) (4t/212!) = 60 components with two y's in the first five 
indices (and two y's in the following four indices), and the five 
components with all four y's in the first five indices. The remaining 
sixty independent components have, instead, representative -1: 
they are the 5(4!/3!1!) = 20 components with one y in the first 
five indices (and three y's in the following four indices) and the 
(5!/3!2!)4 = 40 components with three y's in the first five indices 
(and one y in the following four indices). The equation for c 
reads, thus, 1 = c(66 - 60) and c = 1/6. 

(g) We present now the procedure to derive directly 
the explicit expressions of some dependent components 
from the explicit expressions of other dependent com- 
ponents. This procedure consists of two distinct parts. 

The first part concerns the derivation, from the 
expression of a given dependent component, of the 
expressions of the other dependent components which 
can be obtained from the given one by a permutation of 
the indices corresponding to the permutationally 
connected indices of the pertinent independent compo- 
nents. The new expressions are obtained immediately 
from the available expression by applying to both sides 
of the equality the same permutation on all indices for 
odd ranks and on all indices but the last for even 
ranks.* 

The second part of the procedure concerns the 
derivation of the expressions of the dependent compo- 
nents with ny odd from the expressions of the dependent 
components with ny even. For odd-rank tensors, one is 
dealing with pairs of components, one with ny even and 
one with ny odd, obtained from one another by 
exchanging x and y in all indices, while for even-rank 
tensors one is dealing with pairs of components, again 
one with ny even and one with n v odd, obtained from 
one another by exchanging x and y in all indices but the 
last. The procedure exploits simply the numerical 
proportionality between the representative vectors of 
these pairs of ny- even and ny-odd dependent compo- 
nents of a tensor, and of the analogous pairs of ny-even 
and ny-odd independent components (see § 3d), while 
keeping in mind that these vectors lie, in fact, in inde- 
pendent linear spaces (see the pertinent footnote in § 
3e). This numerical proportionality is established in the 
Appendix and contains an element of arbitrariness 
since one is free to multiply, for example, all the repre- 
sentative vectors of the ny-odd components of a tensor 
by any numerical factor. For reasons of convenience in 
the application of the procedure we choose to assert the 
following: 

(i) for odd-rank tensors, the representative vectors 
of  a component with ny even and of the component 
with ny odd obtained from it be exchanging x and y are 
equal; 

(ii) for even-rank tensors, the representative vectors 
of a component with ny even and of the component 
with ny odd obtained from it by exchanging x and y in 
the first r - 1 indices are equal or opposite depending 
on whether the rth index is x or y. 
The specific choice of multiplying factor to which 
these assertions correspond is made clear by the dis- 
cussion in the Appendix. The rule for obtaining the 
expressions of the dependent components with ny odd 
from the expressions of the dependent components with 

* This type of procedure was adopted also by Fumi (1952c), 
Fieschi & Fumi (1953) and Wondratschek (1953) in the particular 
cases in which they chose permutationally closed sets of inde- 
pendent components. 
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ny even thus reads as follows: exchange x and y on both 
sides of the equality on the permutationally connected 
indices, with the additional provision of changing the 
sign of the expression when dealing with a dependent 
component of an even-rank tensor with ny even whose 
last index is y. 

Examples of the two procedures are given in § 4. 

4 ! . . . .  ! 
xxxxy, ,y = c ~ xxxyy l  x 

(h) We have emphasized in § 3(b) that the difficult 
part of the problem of obtaining the explicit expressions 
of the dependent components of a tensor in group 3(3~) 
is the x,y part and we have thus concentrated our dis- 
cussion on this. 

To treat completely a general tensor of rank r, the 
method is applied in turn to the two families of 
components of rank r in x and y with ny even and ny 
odd, and to the x,y parts of the two families of 
components with ny even and ny odd of rank r - 1 in x 
and y, of rank r - 2 in x and y and so on down to rank 
1 in x and y. 

The expressions of the dependent components of the 
tensor of total rank r which have a partial rank r' < r in 
x and y are finally obtained quite simply from the 
expressions of the x,y parts of these components by 
putting in (r - r') z indices, and by considering the 
distinct distributions of the z indices among the x and y 
indices. Obviously, the component of rank r in z is 
always an independent component. 

4. Examples of application of the new method to 
general tensors in x and y of ranks 6 and 7 in group 
3(3~) 

Rank 6 
Re-type invariants: 
R e + + + + + [  +, 1" 

Re(+++- - - - ) - - ,  10 and 

ny even 

I.xxxx ix I 
YYYYY[Y 

( x x x x y ) y q  

(yyyy x ) x 

I (xxxyy)x I 
( yyyxx )y  

• . . . . . . . . . . . . . . . . . .  e ~  . . . .  . . . . . . . . . . .  o . . .  

l§ 
. . . . . . . .  o . . . . . . . . . .  O ~  . . . .  o . ° . . . . ° . o . . ° . .  

. . . . .  • . . . . . . . . . . . . .  0 ° . ° . ° . o ° ° o . . . ° . . . . .  

5 
. . . . . . . . .  . . . .  . . . . . .  e . . . . . . . . . . . . . . . . . . .  

. ° . ° o . . .  . . . . . . . . . . .  e . . . . . . o ° o . . . .  . . . . .  ° 

10 
• . . . . . ° . . . ° . . . . . . . .  0 . . . . . . . . . . . . . . . . . . .  

ny odd 

| 
x x x x x l y  

(yyyyx)y 

( x xxxy )  x 

I ( .Vyyxx)x I 

( xxxyy)y  

i 1 0  i i 

YYYYYlY = c~ YcYcY¢))~ x "  + c 2 x x x x x , , x  

[ - I ]  : c '  [ - l O  ~] +c~  [I] 

I 1 0  ! i 

yyyyyIy = 1/6 )?)?)?)j? ,, x + 2/3 xxxxx~x  

1 0  

x x x x x  i y = -- 1/6 fi)fiYrYci x --2/3 yyyyyi x 

6 ! ! 
+ c 2 x x y y x ~ x  + c 3 x x x x x  Ix  

[!] [!] [!] [!] = C 1 + C 2 + C 3 

t 4 , 6 
xxxxy~y = --1/2  2225,y',x + 1/2 xxyyx~ . . . . .  x 

4 6 
( x x x x y ) y  = -- 1/2(Yc22fiy)x + 1/2(22fifix) x 

4 6 

( yyyyx )y  = 1 / 2 @ f i ~ 2 x ) x -  1/2@fi22y)x 

yyyyx  i x = ~ "  

| 
yyyyx , ,x  = same as for xxxxy l y  

I - i ]  = same as for xxxxyLv 

4 6 
y y y y x l x  --2/322Ycfiyix + 1/3 - ' x  ' x x y y x  I + 1/3 ' = X X X X X ~ X  

4 6 t 
( y y y y x ) x  = - 2 / 3 ( 2 2 2 f i y ) x  + 1/3(22f i f ix )x  + 1 / 3 x x x x x : x  

4 6 a 
( x x x x y ) x  = - 2 / 3 ( p f i p 2 x ) x  + 1/3(.f, p 2 2 y ) x  + 1/3 yyyyy lx  

| | 6 | 3 s 

y y y x x l y  = c l x x x y y ' , x  + c2Ygfrpxy_:xt + c3Ycppxx lx  + c 4 x x x x x ! x  

- -  = Cl  - -  + C2 + C3 1 + 6,4 

1 --1 --6 - 3  

I 6 i 3 I i 
y y y x x ~ y  = 5 / 6  x x x y y l x  - 1 / 6  £ X 3 ~ x y l x  - 1 / 6  R ~ x x ~ x  + 1 / 3  x x x x x ~ x  

6 3 
( .Vyyxx)y  = 5 / 6 ( x x x y y ) x -  l / 6 (Yc2~xy )x  - I / 6 ( Y c p ~ x x ) x  + 1 / 3  x x x x x ! x  

6 3 
( x x x y y ) y  = - 5 / 6 ( y y y x x ) x  + l / 6 ( y y x _ y x ) x  + l/6(.9YcYcyy)x - 1 / 3  y y y y y i x  

* The symbol ~ denotes x .~ r y exchange on all the component  
indices. 

]" Short bars under indices denote symmetrization on these 
_ _ _ 6  2 2 2 

indices. Thus, x x y x y x  stands for x x y x y x  + xyxxy_x + y x x x y x  = 
x x y x y x  + x x y y x x  -g 3¢yxxyx + x y x y x x  4--yxxxyx + yxxyxx .  --  

* The meaning of this round bracket and the role of the vertical 
dashed line were specified in Table 1. 

"!" The rectangular frame encloses the Cartesian orthogonal tensor 
components which are chosen as independent. 

I: The symbol e (or o) indicates that the representative vectors of 
the Cartesian orthogonal tensor components on the two sides of the 
symbol are 'equal' (or 'opposite') (see § 3g). 

§ The symbol 1 indicates that there is only one Cartesian 
orthogonal tensor component  on each side of the symbol e. 

~] The round bracket encloses the indices which are permutation- 
ally connected and indicates how one can obtain other independent 
components from a given independent component, and the 
expressions of other dependent components from the expression of a 
given dependent component:  specifically it means that one must  
take the distinct permutations of the x and y indices inside the 
bracket (with their eventual bars). 

II Short bars over indices denote symmetrization on these indices, 
i.e. summation over their distinct permutations: the number placed 
above the component  is the number of distinct permutations. 
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R a n k  7 

Re-type invariants: Re(+ + + + + - - - ) ,  21 

ny even ny odd 

X X X X X X X  

1 
e ........................ YYYYYYY 

(xyyyyyy) ........................ 7 
e 

........................ ~ x x x x x x )  

[ ( xxxxxyy)  l ........................ 21e ........................ [ (yyyyyxx )] 

( xxxyyyy)  ........................ 35 e ........................ ( yyyxxxx )  

21 
x x x x x x x  = c 2YcYcYc2y,) 

[11 = e [-11 
21 

x x x x x x x  = -- 2222Ycy,) 

21 

yyyyyyy = --)Y,)S,)2Yc 

15 6 _ _ _ _  . .  
xyyyyyy = c I x x x x x y y  + c2Yxxxxxy  

15 6 

xyyyyyy = 1/3 x2Yc22y, fi + 2/3.1,22222) 
15 6 

( xyyyyyy) = 1/3( x2.fcYcYc~) + 2/30,)?.~.~2&P) 
15 6 

( yxxxxxx  ) = 1/3(yy,))~22 ) + 2/3(x~)Yc) 

6 12 3 . . . .  
xxxyyyy  = c~ x x x x x y y  + c 2 .fcYc.i, x x x y  + c 3 Ycppxxxx 

. . . .  

I-i] [i] [-!] [-!] C 1 + C 2 + C 3 

12 3 

xxxyyyy  = 1/3 2Ycpxxxy - 1/3 2ppxxxx  

12 3 

(xxxyyyy)  = 1/3(22•xxxy) - l/3(2)~xxxx) 
. . . .  

12 3 

(yyyxxxx)  = 1 / 3 ( ~ Y c y y y x ) -  1/30YcYcyyyy) 
. . . .  

5. Tables for general tensors of rank 1 to 8 in group 
3(3) 

The complete schemes of general tensors of rank 1 to 8 
in group 3(3 Z) are reported in Table 2.* We give one 
example of their usage for rank 6. The expression 

3 2 

[ ( x x x y y ) z ]  = - 1/3[ (Y@)yy)z]  + 2/3[ (yyyYcfi)z],  60 

asserts that the explicit expression of the dependent 
component x x x y y z  reads 

x x x y y z  = - 1 / 3 x y y y y z -  1 / 3 y x y y y z -  1 / 3 y y x y y z  

+ 2 / 3 y y y x y z  + 2 / 3 y y y y x z .  

It asserts also that the expressions of  other dependent 
components can be generated from the expression of  
x x x y y z  by simple permutations of the indices: to obtain 
the complete set of dependent components of this 
family one considers the ten distinct permutations of  
x x x y y  and one places z in each of them in the six 
possible positions. The expression of any one of these 
dependent components is obtained from the expression 
of x x x y y z  by performing the same permutation on both 
sides of the equality. For  instance, the expression of the 
dependent component x y z y x x  reads 

_ 2 _  

x y z y x x  = - 1 / 3 2 y } y p p  + 2 / 3 y Y c z y y y  

We are much indebted to Professor Elliott of  the 
University of Oxford and to Professor Beltrametti of  
the University of Genoa for many useful discussions. 
We are also indebted to Professor Elliott for his kind 
hospitality in the Department  of Theoretical Physics at 
Oxford for brief periods of work and consultation. 

A P P E N D I X  

We should note at the onset that the Appendix applies 
to any axial group with z II axis (and not merely to 
group 3 with z II 3). 

We recall first from § 3(c) that the set of numerical 
coefficients k ( C , I )  with which a given component C 
enters into the individual invariants 1 of a complete 
family of linearly independent invariants of  a given 
group is a valid representative vector of the component 
when this is subject to the condition of invariance under 
the group. 

We recall next from § 3(c) that the monomial 
invariants in + and - are expressed as products of the 
special coordinates + and - of Hermann 's  (1934) base. 

It follows that the coefficient k ( C , I )  is the product of  
the coefficients with which the indices (i .e.  coordinates 
x and y) of the component enter into the corresponding 
indices ( i .e .  special coordinates + and - )  of the 
invariant. 

* The particularization of the results for the tensor of rank 8 to 
the case of the (non-tensorial) array for fourth-order elasticity 
treated by Chung & Li (1974) gives the expressions reported 
in Table 1 of their paper under RII with the exception of the 
following expressions: 1356 = 2.1134 ~- 3.1234; 3455 = -3.3444; 
4456 = ½(3.1444 + 1455); 4666 = -2(1115 - 3.1125 - 1146)/3; 
5556 = ½(3.1444 + 1455); 5666 = 2(1114 - 3.1124 + 1156)/3; 
and of the expressions for 2455, 2555, 2566 and 4466; the last four 
expressions are, however, given correctly in the Appendix of their 
paper. There are also a few cases of errors in the Appendix 
corrected in Table 1 (e.g. the expression for 2266). 
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Table 2. General tensors of  rank 1 to 8 in group 3(z II 3) 

S t ruc tu re  o f  the  table: The table gives the complete schemes of the tensors in a Cartesian orthogonal reference system with z II 3, designating 
the tensor components by their suffixes. It lists the independent components (enclosed in rectangular frames), the expressions of the 
dependent components in terms of independent components, as well as the components which are zero. 

The left-hand part of each rank table includes the components with an even number ofy  indices, while the right-hand part includes the 
components with an odd number ofy indices. 

The horizontal sections of each rank table include components of gradually increasing rank in z. 
The dependent components included in a horizontal section of the left-hand part (or of the right-hand part) of each rank table are 

expressed only in terms of the independent components of the block. Within each block of a rank table, the dependent components are 
listed in order of decreasing permutational symmetry on all x , y  indices for odd rank in x and y, and on all x , y  indices but the last for even 
rank in x and y. 

The reader will notice connections between the left-hand and the right-hand parts of each rank table, both in the independent components 
and in the expressions of the dependent components. Also, the tables of tensors from rank 2 onwards contain horizontal sections derived 
from the tables for tensors of lower rank. Finally, the compactness of the expressions of the dependent components within each block of a 
rank table may be noticed. The left-right connections and the compactness of the expressions result from an optimal choice of independent 
components. The division into horizontal sections arises from the essentially two-dimensional nature of group 3(3~). A more detailed 
discussion of these points is given in § 3 of the paper. 
Nota t ion  o f  the  table: The round bracket and the square bracket indicate how one can obtain other independent components from a given 
independent component, and the expressions of other dependent components from the expression of a given dependent component. The 
round bracket means that one must take the distinct permutations of the x and y indices inside the bracket (with their eventual bars). The 
square bracket means that one must take the distinct permutations of the z indices with the x and y indices inside the bracket, subject to the 
condition that the order  of the x and y indices remains unchanged. When a round bracket is enclosed inside a square bracket, one should 
perform first the permutations indicated by the round bracket and then those indicated by the square bracket. The number next to an inde- 
pendent component, or to the expression of a dependent component, gives the total number of independent components or of expressions of 
dependent components which can be generated by the procedure. Short bars placed over a group of x , y  indices denote summation over the 
distinct permutations of the indices in question. Short bars placed over a group of x , y  indices and under another group of x , y  indices indicate 
double summation over the distinct permutations of the first group of indices among themselves and of the second group of indices among 
themselves. The number placed above the component indicates the number of terms in the summation. 
Use o f  the table: An example of the use of the table is given in § 5 of the paper. 

The tables for rank 1 to 5 coincide with those reported by Fumi (1952c) and Fieschi & Fumi (1953), but they are more compact. The 
table for rank 6 differs from the one reported by Fieschi & Fumi (1953) by a better choice of independent components among the com- 
ponents of rank 6 in x and y: the new choice gives more symmetric and more compactable expressions. The tables for rank 7 and rank 8 are 
entirely new. 

R a n k  1 R a n k  3 

x = 0 y = 0 (xyy) = - x x x  3 (yxx) = -yyy  

R a n k  2 

V1 I [xxz,,  I I 1 
[yyzl = [xxz] 3 lxyzl =--[yxz] 

y y = x x  x y = - - y x  [xzz l=O 3 [yzz]=O 

[xz] = 0 2 [yz] = 0 

D 
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Table 2 (cont.) 

R a n k  4 R a n k  5 
[ (yyx)x, 3 ] [ (x.w)x, 3 ] ](xyyyy) ,5  [ 

3 3 5 

xxxx  = .v-f~2x yyyx = k2 )x  xxxxx  = -- 1/3 # ) p )  

3 3 3 

yyyy = fif~2x xxxy  = --YU@x (xxxyy) = - 1/3 (2ppyy) 

2 

( xxy)y = (yyx )x 3 (yyx )y = - (  xxy)x  + 2/3(yyy2)) 

Table 2 (cont.) 

(yxxxx) ,5  ] 

5 

yyyyy = - -1 /3)2222 

3 

(yyyxx ) = - 1/3(.f,22xx ) 

2 

+ 2/3(xxx~2)  

[ [xxxzl ,4 ] [ [yyyz],4 ] 
[ (xyy)z ] = - [  xxxz  ] 12 [ (yxx)z  ] = -[yyyz l  

[ [xxzz],6 ] ] [yxzz],6 ] 

[yyzz] = [xxzz] 6 [xyzz] =--[yxzz]  

[xzzz] = 0 4 [yzzz] = 0 

] [c.yx)xzl.,  I ] l(xx )xzl.l  ] 
3 3 

[xxxxz] =[))xxz] 5 [yyyxz]=[xx)xz]  

3 3 

[yyyyzl = [~)2xz] 5 [ x x x y z ] = - [ x ~ ) x z ]  

[(xxy)yz] = [(yyx)xzl  15 [(yyx)yz] = -[(xxy)xz]  

[ [xxxzzl,  lO ] [ [yyyzzl, 10 [ 

[(xyy)zz] = - [xxxzz ]  30 [(yxx)zz] = -[yyyzz]  

[ [xxzzzl, lO I [ [yxzzzl, lO ] 

[yyzzz] = [xxzzz] 10 [xyzzz] = -[yxzzz]  

Note now that the exchange of coordinates x and y 
induces an exchange of special coordinates + and - ;  
specifically, 

( ~ )  __, (Y) induces ( + )  __, {(i) - ] .  
\ (-/)+] 

Note also that the coefficient k(C,I )  can be written 
as the product of two coefficients k(Ca, Ia)k(Cb, Ib) 
where Ca and Cb (and correspondingly Ia and Io) are 
products of coordinates x and y (and correspondingly 
+ and - )  of lower ranks such that C = Ca Cb (and 
correspondingly I = I a Io). 

It follows then that the contribution k((Ta, Ia) to the 
coefficient k(C,I )  of a component C = (7, C b, where (Ta 
is the coordinate product exchanged in x and y of the 
coordinate product C a, is given by 

k((Ta, Ia) = m(Ia)k(Ca, Ta), 

where 

m(Ia) = in(--1) "-, 

with n = (total) number of coordinates in the product 
C a (or Ia) and n = number o f -  coordinates in the 
product I a. [a is the coordinate product exchanged in + 
and - of the coordinate product I a. 

Ixzzzzl = 0 5 lyzzzzl  = 0 

(i) Components o f  odd rank totally exchanged in x 
and y 

Let C be a component even in y, then its rep- 
resentative relative to the invariant I + I is  given by 

k ( C , I  + I~ = k ( C , I )  + k(C,I~.  

It follows that (7 has the 'same' representative 
relative to the invariant I - / ~  Indeed, 

k ( (7, I - l') = k ( (7, I ) - k ( (7, I ~) 

= in(-1)n-k(C,  I ~ -  in(-1)"a-k(C,I)  

= i " [ ( -1 ) ' - k (C ,  I3 - ( -1)Z-k(C, I )] .  

Since n is odd, n and f f  have opposite parity; with the 
convention of choosing as I t he  invariants with f f  odd 
(the same convention adopted in § 3c), one has 

k((7, I -  I ' )= i ' [ k ( C , ~  + k(C, I ) ]  = in k ( C , I  + I~). 
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(xxxyy)x, 10 [ 
X X X X X X  

10 

yyyyyy= 1/6.fcYcYc~)x + 2/3xxxxxx  

6 
( x x x x y ) y  = - l /2(yc~. f ,y)x  + 1/2(YcY6,5,x)x 

4 6 

(yyyyx )x = -2/3(.fcYcYcpy)x + I /3( .~))x)x  + 1/3 xxxxxx 

10 

(yyyxx )y = (xxxyy)x - I/6(.~.~)))x + 1/3 xxxxxx 

5 

5 

10 

(yyyxx )x, 10 
yyyyyx 

10 

xxxxxy = -- 1/6fi.~.~,~2x -- 2/3 yyyyyx 
4 6 

(yyyyx)y= 1/2@fiypYcx)x-- 1/20)~Ycy)x 

4 6 

(xxxxy~x =--2/3@fi)~x)x + 1/30fi~Ycy)x + 1/3yyyyyx 

1o 

(xxxyy)y = --(yyyxx )x + 1 / 6 0 f i ) . ~ ) x -  l/3 yyyyyx 

5 

I x x x x x z l  = - l/3[.~ppp)z] 
3 2 

I (xxxyy)zl = - l/3[ ( 2ppyy)zl + 2/3[ (yyy2~)zl 

[ [(~yyyy)zl,30 I 

6 

60 

5 

[yyyyyzl=--l/3[pYcYc~z] 

3 2 

[(yyyxx)zl=-l /3[U,22xx)z]  + 2/3[(xxxp2)z] 

[(yxxxx)zl,30 ] 

3 

[xxxxzz]  = [pyxxzz l  

3 
[yyyyzzl=[pp~xzzl 

[(xxy)yzzl = I(yyx)xzzl 

l(yyx)xzzl ,45[ 

3 

[yyyxzzl = [ YcYc)xzz] 

3 

[xxxyzzl = -[YcS:Pxzzl 

[ (yyx )yzzl = -[  (xxy)xzzl 

[(xxy)xzzl,45 ] 

[ (xyy)zzz] = -[  xxxzzz } 

[xxxzzz],20 ] 

60 [(yxx)zzz l=-[yyyzzz l  

[yyyzzz],20 I 

[ y y z z z z l = I x x z z z z ]  

[xxzzzzl, 15[ 

[xyzzzz l=-[yxzzzz]  

lyxzzzz],15 ] 

[xzzzzzl = 0 [yzzzzzl=O 

Thus the representative vectors {k(C, I - I-)} and 
{k(C, I + 1")} are the same, apart from the multi- 
plicative factor i n. 

(ii) Components  o f  even rank  par t ia l ly  exchanged  in x 
a n d  y 

Let C be a component even in y of  the form C a C~, 
where C x is the coordinate x. Consider the component 

C' - C a C x, which is necessarily odd in y: one has 
then 

k(C',I-h=k(C',n-k(C',h 
= k (~a ,  I a ) k ( C  x, I x) - k(C_..a, J~a)k(Cx, l~x). 

Since k ( C  x, I x) = k ( C  x, T x) = 1, the problem reduces to 
the previous one [point (i)] since the product C a is of  
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Table 2 (cont.) 

21 

xxxxxxx = --xxxxxyy 

15 6 

(xyyyyyy) = I/3(x~,~b).~) + 2/3(y~x-~3~) 

12 ] 

(xxxyyyy) = l/3(J?2);'xx_~)-- 1/3(Yc~)xxxx) 

(xxxxxyy), 21 [ 

21 

yyyyyyy = --yyyyyxx 

15 6 

(yxxxxxx) = 1/3 (y)))).~?) + 2/3(x)fiS, fifiYc) 

12 3 

(yyyxxxx)= 1/30))2yyyx)-- 1/3(~22yyyy) 

(yyyyyxx), 21 I 

[(xxxyy)xzl,70 [ 
[xxxxxxzl, 7 

10 

lyyyyyyz] = l/6[~vScppxzl + 2/3[xxxxxxzl 

4 6 

[(xxxxy)yzl = - 1/2[(YcYcicpy)xzl + 1/2[(Ydcppx)xzl 

4 6 

[(yyyyx)xzl =-2/3[(YcYdcpy)xzl + 1/3[(Ydcppx)xz] + l/3[xxxxxxzl 

~o 
[(yyyxx)yzl = [(xxxyy)xz]-  l/6[(YUc~pp)xz] + I/3lxxxxxxzl 

[(yyyxx)xz], 70 
[yyyyyxz], 7 [ 

10 

lxxxxxyzl = - 1/61ppp22xzl - 2/3[yyyyyxz] 

4 6 
[ (yyyyx )yzl = 1/2[ ( ~ 2 x  )xzl - 1/2[ U,~22y)xzl 

4 6 

l(xxxxy)xzl =-2/3[(f ,~)2x)xzl + 1/31@~22y)xzl + 1/3[yyyyyxzl 

I0 

[ ( xxxyy)yzl =-[(yyyxx)xz l  + 1/61(j,y~22 )xz l - I/3[ yyyyyxzl 

[(xyyyy)zz],105 ] 

5 

Ixxxxxzzl=-l /3I~ppppzzl  

3 2 

[(xxxyy)zzl=-l/3[(2fipyy)zz] + 2/3[(yyyYc~)zz] 

21 

210 

[(yxxxx)zz], 105 ] 

5 

[yyyyyzzl = - 1/3 [)2222zz I 

3 2 
l(yyyxx)zzl = - 1/3[(~22xx)zz] + 2/3[(xxx~2)zzl 

3 

[xxxxzzzl = [pp~xzzzl 

3 
lyyyyzzzl=lp)~xzzzl  

[(xxy)yzzzl=[(yyx)xzzzl  

[(yyx)xzzzl, 105 [ 

35 

35 

105 

3 
[yyyxzzzl = [~pxzzz] 

3 
[xxxyzzz] = - [~pxzzz]  

l (yyx)yzzz l=-[(xxy)xzzz l  

[(xxy)xzzzl, 105 [ 

[(xyy)zzzzl = --[xxxzzzzl 

[xxxzzzzl,35 [ 

105 [ O'xx)zzzz] = -[yyyzzzzl 

[yyyzzzz],35 I 

lyyzzzzz l=lxxzzzzz l  

[xxzzzzz],21[ 

[xyzzzzzl = -[yxzzzzz] 

[yxzzzzzl,21 [ 

[xzzzzzzl = 0 [yzzzzzzl = 0 

Z Z Z Z Z Z Z  [ 
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Rank  8 

(yyyyxxx)x ,35 
(yyyyyyx )x, 7 
X X X X X X X X  

35 7 

yyyyyyyy =-3/8pppp2Yc2x-- 5/4pppppp2x + 27/8xxxxxxxx  

15 20 

(xxxxxxy)y  = 1/24~fi)).fc2x )x - I/8(j,).~2YcYcy)x + l/4(yyyyyyx )x 

6 

- 5/12@~fi)~Ycy)x + 5 /8xxxxxxxx  
5 20 2 

(xxxxxyy)x  = l/3(~p~pYcxx)x - 1/3 (.~).~.~y_x)x - 2/3(yyyyy~c)x 

5 

- l/3(~y-~p~yy)x + x x x x x x x x  

5 20 tO 

(yyyyyxx)y = 3/8())))Ycxx)x - l/8(j,)fi22yx)x + 3/8(y,)22Y~yy)x 

+ 1/4(.P.P.P.P))2)x - 3 /8xxxxxxxx  

(xxxxyyy)y = 5 / 8 ( y y y y x x x ) x -  5 / 2 4 ~ ) p 2 y x x ) x -  1/24(_P).~2y_y_x)x 

4 3 4 

+ l/8(~222yyy)x + 1 /12(yyyy f i f i2 )x-  l/4(~fi~2yyy)x 

+ 3 /Sxxxxxxxx  

(xxxxyyy)x ,35 ] 
(xxxxxxy)x ,  7 
yyyyyyyx 

35 7 

xxxxxxxy  = 3/8YcYcYcYc)~x + 5/4YcYc~cYcYc~c)x-- 27/8yyyyyyyx 

15 20 

(yyyyyyx)y=-l/24(YcYcYcYc~)y)x + l/8(.fcYcScS,~)x)x-- 1/4(xxxxxxy)x  

6 

+ 5/12(YcYcYcYcYc)x)x - 5/8yyyyyyyx 

5 20 2 

(yyyyyxx)x = l/3(YcYcYc~c~yy)x- I/3(.k.~.~f'f, xy)x  - 2/3(xxxxxX'))x 
5 

- l/3(~cYc~)xx)x + yyyyyyyx 

5 2O tO 
( xxxxxyy)y  = - 3 /8(  P.Y:YcYc)yy)x + 1/8(.~.~.f, px_y_ ) x -- 3 /8(  YcYcp~pxx )x 

7 

- l / 4 (~ .k .~ .~ f ' )x  + 3/8yyyyyyyx 

X2 i s  

O'yyyxxx)y = - 5 / 8 ( x x x x y y y ) x  + 5/24(.~X"~'_xy__y_)x + 1/24(.~.~x.x_y.)x 

4 3 ,4 

- l / S U c p p p x x x ) x -  1/12(xxxxSc~cp)x + l/4(~cSCx-)xxx)x 

- 3/8yyyyyyyx 

[ [(xxxxxyy)zl,  168 [ 

21 

Ixxxxxxxzl = -[ 22222pS'zl 

15 6 

[(xyyyyyy)zl = I/3[(x222k)))zl  + 2/310,k2k22~)zl 

12 3 

[(xxxyyyy)zl = 1/31(22fixxxy)zl-  l /3[(2fi)xxxx)zl  

8 

56 

280 

[(yyyyyxx)z], 168 ] 

21 

l yy.vyyy.vz I = - I  S'pppp22z I 

I (yxxxxxx)z l  = 1/31(.v).~).f,22 )zl + 2/3l(xp)fifi)k )zl 

12 3 

[ O'vyxxxx)zl  = !/31 (.1}~2yvvx)z - 1/3[ (~22yyyy)z] 

I(xxxyy)xzzl ,  280 I 
Ixxxxxxzz l ,  28 

1o 

[yyyyyyzzl = 1 / 6 l ~ p p x z z l  + 2/31xxxxxxzzl  

4 6 

l ( x x x x y ) y z z l = - l / 2 l ( ~ p y ) x z z l  + l/2l(~Ycppx)xzzl 

4 6 

[ O ' y y y x ) x z z l = - 2 / 3 I ( ~ p y ) x z z ]  + 1/31(Ydcppx)xzzl + l /3 lxxxxxxzz l  

I0  

[ ( y y y x x ) y z z l = I ( x x x y y ) x z z l - -  1 /61(~c)p)xzz l  + l /3[xxxxxxzz l  

140 

140 

280 

[ (yyyxx)xzz  l, 280  [ 
[yyyyyxzz], 28 I 

1o 

Ixxxxxyzz l  = - 1/61pp)Yc~cxzzl - 2/3lyyyyyxzz] 

4 6 

[ (yyyyx)yzz  1 = 1/2[ (p)pYcx)xzz I -- 1 / 2 1 ( p P ~ y ) x z z l  

4 6 

[(xxxxy)xzzl  =-2/3I(pppYcx)xzzl  + 1/3[(ppYcYcy)xzzl + 1/3[yyyyyxzzl 

10 

[ (xxxyy)yzz] = - [  (yyyxx)xzz  I + 1/610ppYcYc)xzzl - 1/3[yyyyyxzz]  

5 

[xxxxxzzzl  = - l/3[Ycppppzzzl 

3 2 

[(xxxyy)zzzl =-1/3[(kpf iyy)zzz l  + 2/3[(yyy2~)zzzl 

1(xyyyy)zzzl,2801 

56 

560 

[O, xxxx)zzz] ,280 [ 

5 

[yyyyyzzz] = -- 1/3[)ScYc22zzzl 

3 2 

[(yyyxx)zzzl  = - l / 3 [ U ' 2 2 x x ) z z z l  + 2/3[(xxxp2 )zzzl 

3 
[xxxxzzzz l  = [pp~xzzzzl 

3 
lyyyyzzzzl  =[~)~xzzzz]  

[(xxy)yzzzzl  = [(yyx)xzzzzl  

I [O'yx)xzzzzl ,210 [ 

70 

70 

210 

3 
[yyyxzzzzl=[~'y~xzzzz]  

3 
[ x x x y z z z z l = - [ ~ x z z z z l  

[ ( y y x ) y z z z z l = - [ ( x x y ) x z z z z ]  

[ (xxy)xzzzz],  2101 
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[(xyy)zzzzz] = -Ixxxzzzzzl 

I lxxxzzzzzl,56 ] 

168 [(yxx)zzzzzl =-[yyyzzzzz] 

[yyyzzzzzl,56 [ 

lyyzzzzzzl=[xxzzzzzzl 

1xxzzzzzzl,28] 

28 [xyzzzzzz] =-[yxzzzzzz] 

[yxzzzzzzl. 28 I 

Ixzzzzzzzl=O 8 [yzzzzzzzl = 0 

ZZZZZZZZ I 

odd rank. It follows that 

{ k ( C ' , I -  I3} = i " {k (C , I  + I')}. 

Let C now be a component even in y of the form 
Ca Cy. Then for C'  =-- C a Cy, which is necessarily odd in 
y, one has 

k(C' ,  I -  I') = k(C a, Ia)k(Cy, Iy) - k(Ca, Ta)k(Cy , ~) ,  

where k(Cy, ~ )  = - k (Cy ,  Iy) (= -T-i). It follows that 

{ k ( C ' , I -  I')} = - i " { k ( C , I  + I~)}. 

(iii) Components o f  even rank totally exchanged in x 
and y 

Let C be a component even in y. Then C is 
necessarily even in y. One has thus 

k(C, I + I"} = k(C, I) + k(C, I") 

= P(-1)"-k(C, I ' )  + i"(-1)< k(C,I ) .  

We distinguish two cases for n_ and h_: 

(a) n_, ~_ even; (b) n_, h odd, 
and two cases for n 

(A) n = 0 m o d 4 ,  i n = + l ;  (B) n = 2 m o d 4 ,  i " = - l .  

One has then the following four possibilities: 

rank n = 0mod 4 case (Aa) k(C, I + I') = k(C, I + I'); 

case (Ab) k(C, I + I") = -k(C,  I + 1"); 

rank n = 2mod 4 case ( Ba) k( C, I + I') = - k (  C, I + I'3; 
case (Bb) k(C, I + I') = k(C, I + I'). 

These cases can be summarized as follows: for n_ = 
r/_ mod 4, or equivalently for n_ = n+ mod 4, 

k(C) = k(C), 

otherwise (i.e. for n_ :/:h_mod 4, or equivalently for n_ 
4: n + mod 4), 

k(C) = - k ( C ) .  

For C and (~ components odd in y, analogous 
reasoning leads to the following results: 

k(C) = - k ( C )  if n_ = n+mod 4; 

k(C) = k(C) otherwise. 

The results for C and C' even in y, and for C and C' 
odd in y, imply that in group 4 (and in the non-crystallo- 
graphic groups 8, 12 etc.) and in group m one has 

C = C if C is even in y (n r = 0rood 2), 
C = - C  if C is odd in y ( n y = l m o d 2 ) .  
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Abstract 

The first part of the paper emphasizes that the problem 
of the effect of the rotational symmetry of crystals on 
their tensor properties is completely solved for the 
groups of 1-, 2- and 4-fold principal symmetry since 
simple general formulas can be given which provide the 
schemes of a (polar or axial) general tensor of any rank 
in these groups, thus yielding a closed-form solution. 
These formulas are derived both by the new method of 
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vector representatives [introduced in paper I" Fumi & 
Ripamonti (1980). Acta Cryst. A36, 535-551] and by 
the direct-inspection method. In the second part, it is 
emphasized that simple general rules can be given to 
obtain the schemes of a (general or particular, polar or 
axial) tensor of any rank in the trigonal and hexagonal 
groups other than group 3 from the corresponding 
scheme in group 3(3z). These rules are given directly by 
the formulas obtained in the first part for the groups (or 
generators) of order 2. These compact formulas and 
rules are applied to two specific tensor properties dis- 
cussed in recent literature, pointing out errors in some 
of the reported schemes. Brief discussions are finally 
given of various techniques to obtain the tensor 
schemes in the cylindrical and spherical groups, in 
particular of the new methods introduced in paper I. 
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